Point Cloud Library (PCL) 1.15.0
Loading...
Searching...
No Matches
extract_labeled_clusters.hpp
1/*
2 * Software License Agreement (BSD License)
3 *
4 * Copyright (c) 2011, Willow Garage, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
17 * * Neither the name of the copyright holder(s) nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
29 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
31 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 *
34 * $id $
35 */
36
37#ifndef PCL_SEGMENTATION_IMPL_EXTRACT_LABELED_CLUSTERS_H_
38#define PCL_SEGMENTATION_IMPL_EXTRACT_LABELED_CLUSTERS_H_
39
40#include <pcl/segmentation/extract_labeled_clusters.h>
41
42//////////////////////////////////////////////////////////////////////////////////////////////
43template <typename PointT>
44void
46 const PointCloud<PointT>& cloud,
47 const typename search::Search<PointT>::Ptr& tree,
48 float tolerance,
49 std::vector<std::vector<PointIndices>>& labeled_clusters,
50 unsigned int min_pts_per_cluster,
51 unsigned int max_pts_per_cluster)
52{
53 if (tree->getInputCloud()->size() != cloud.size()) {
54 PCL_ERROR("[pcl::extractLabeledEuclideanClusters] Tree built for a different point "
55 "cloud dataset (%lu) than the input cloud (%lu)!\n",
56 tree->getInputCloud()->size(),
57 cloud.size());
58 return;
59 }
60 // If tree gives sorted results, we can skip the first one because it is the query point itself
61 const std::size_t nn_start_idx = tree->getSortedResults () ? 1 : 0;
62 // Create a bool vector of processed point indices, and initialize it to false
63 std::vector<bool> processed(cloud.size(), false);
64
65 Indices nn_indices;
66 std::vector<float> nn_distances;
67
68 // Process all points in the indices vector
69 for (index_t i = 0; i < static_cast<index_t>(cloud.size()); ++i) {
70 if (processed[i])
71 continue;
72
73 Indices seed_queue;
74 int sq_idx = 0;
75 seed_queue.push_back(i);
76
77 processed[i] = true;
78
79 while (sq_idx < static_cast<int>(seed_queue.size())) {
80 // Search for sq_idx
81 int ret = tree->radiusSearch(seed_queue[sq_idx],
82 tolerance,
83 nn_indices,
84 nn_distances,
85 std::numeric_limits<int>::max());
86 if (ret == -1)
87 PCL_ERROR("radiusSearch on tree came back with error -1");
88 if (!ret) {
89 sq_idx++;
90 continue;
91 }
92
93 for (std::size_t j = nn_start_idx; j < nn_indices.size(); ++j)
94 {
95 if (processed[nn_indices[j]]) // Has this point been processed before ?
96 continue;
97 if (cloud[i].label == cloud[nn_indices[j]].label) {
98 // Perform a simple Euclidean clustering
99 seed_queue.push_back(nn_indices[j]);
100 processed[nn_indices[j]] = true;
101 }
102 }
103
104 sq_idx++;
105 }
106
107 // If this queue is satisfactory, add to the clusters
108 if (seed_queue.size() >= min_pts_per_cluster &&
109 seed_queue.size() <= max_pts_per_cluster) {
111 r.indices.resize(seed_queue.size());
112 for (std::size_t j = 0; j < seed_queue.size(); ++j)
113 r.indices[j] = seed_queue[j];
114 // After clustering, indices are out of order, so sort them
115 std::sort(r.indices.begin(), r.indices.end());
116
117 r.header = cloud.header;
118 labeled_clusters[cloud[i].label].push_back(
119 r); // We could avoid a copy by working directly in the vector
120 }
121 }
122}
123//////////////////////////////////////////////////////////////////////////////////////////////
124//////////////////////////////////////////////////////////////////////////////////////////////
125//////////////////////////////////////////////////////////////////////////////////////////////
126
127template <typename PointT>
128void
130 std::vector<std::vector<PointIndices>>& labeled_clusters)
131{
132 if (!initCompute() || (input_ && input_->empty()) ||
133 (indices_ && indices_->empty())) {
134 labeled_clusters.clear();
135 return;
136 }
137
138 // Initialize the spatial locator
139 if (!tree_) {
140 if (input_->isOrganized())
142 else
143 tree_.reset(new pcl::search::KdTree<PointT>(false));
144 }
145
146 // Send the input dataset to the spatial locator
147 tree_->setInputCloud(input_);
148 extractLabeledEuclideanClusters(*input_,
149 tree_,
150 static_cast<float>(cluster_tolerance_),
151 labeled_clusters,
152 min_pts_per_cluster_,
153 max_pts_per_cluster_);
154
155 // Sort the clusters based on their size (largest one first)
156 for (auto& labeled_cluster : labeled_clusters)
157 std::sort(labeled_cluster.rbegin(), labeled_cluster.rend(), comparePointClusters);
158
159 deinitCompute();
160}
161
162#define PCL_INSTANTIATE_LabeledEuclideanClusterExtraction(T) \
163 template class PCL_EXPORTS pcl::LabeledEuclideanClusterExtraction<T>;
164#define PCL_INSTANTIATE_extractLabeledEuclideanClusters(T) \
165 template void PCL_EXPORTS pcl::extractLabeledEuclideanClusters<T>( \
166 const pcl::PointCloud<T>&, \
167 const typename pcl::search::Search<T>::Ptr&, \
168 float, \
169 std::vector<std::vector<pcl::PointIndices>>&, \
170 unsigned int, \
171 unsigned int);
172
173#endif // PCL_EXTRACT_CLUSTERS_IMPL_H_
void extract(std::vector< std::vector< PointIndices > > &labeled_clusters)
Cluster extraction in a PointCloud given by <setInputCloud (), setIndices ()>
PointCloud represents the base class in PCL for storing collections of 3D points.
pcl::PCLHeader header
The point cloud header.
std::size_t size() const
search::KdTree is a wrapper class which inherits the pcl::KdTree class for performing search function...
Definition kdtree.h:62
OrganizedNeighbor is a class for optimized nearest neighbor search in organized projectable point clo...
Definition organized.h:66
virtual bool getSortedResults()
Gets whether the results should be sorted (ascending in the distance) or not Otherwise the results ma...
Definition search.hpp:68
shared_ptr< pcl::search::Search< PointT > > Ptr
Definition search.h:81
virtual PointCloudConstPtr getInputCloud() const
Get a pointer to the input point cloud dataset.
Definition search.h:124
virtual int radiusSearch(const PointT &point, double radius, Indices &k_indices, std::vector< float > &k_sqr_distances, unsigned int max_nn=0) const =0
Search for all the nearest neighbors of the query point in a given radius.
void extractLabeledEuclideanClusters(const PointCloud< PointT > &cloud, const typename search::Search< PointT >::Ptr &tree, float tolerance, std::vector< std::vector< PointIndices > > &labeled_clusters, unsigned int min_pts_per_cluster=1, unsigned int max_pts_per_cluster=std::numeric_limits< unsigned int >::max())
Decompose a region of space into clusters based on the Euclidean distance between points.
detail::int_type_t< detail::index_type_size, detail::index_type_signed > index_t
Type used for an index in PCL.
Definition types.h:112
IndicesAllocator<> Indices
Type used for indices in PCL.
Definition types.h:133
::pcl::PCLHeader header