Actual source code: test10.c
slepc-3.20.1 2023-11-27
1: /*
2: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3: SLEPc - Scalable Library for Eigenvalue Problem Computations
4: Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
6: This file is part of SLEPc.
7: SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9: */
11: static char help[] = "Tests a user-defined convergence test in PEP (based on ex16.c).\n\n"
12: "The command line options are:\n"
13: " -n <n>, where <n> = number of grid subdivisions in x dimension.\n"
14: " -m <m>, where <m> = number of grid subdivisions in y dimension.\n\n";
16: #include <slepcpep.h>
18: /*
19: MyConvergedRel - Convergence test relative to the norm of M (given in ctx).
20: */
21: PetscErrorCode MyConvergedRel(PEP pep,PetscScalar eigr,PetscScalar eigi,PetscReal res,PetscReal *errest,void *ctx)
22: {
23: PetscReal norm = *(PetscReal*)ctx;
25: PetscFunctionBegin;
26: *errest = res/norm;
27: PetscFunctionReturn(PETSC_SUCCESS);
28: }
30: int main(int argc,char **argv)
31: {
32: Mat M,C,K,A[3]; /* problem matrices */
33: PEP pep; /* polynomial eigenproblem solver context */
34: PetscInt N,n=10,m,Istart,Iend,II,nev,i,j;
35: PetscBool flag;
36: PetscReal norm;
38: PetscFunctionBeginUser;
39: PetscCall(SlepcInitialize(&argc,&argv,(char*)0,help));
41: PetscCall(PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL));
42: PetscCall(PetscOptionsGetInt(NULL,NULL,"-m",&m,&flag));
43: if (!flag) m=n;
44: N = n*m;
45: PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\nQuadratic Eigenproblem, N=%" PetscInt_FMT " (%" PetscInt_FMT "x%" PetscInt_FMT " grid)\n\n",N,n,m));
47: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
48: Compute the matrices that define the eigensystem, (k^2*M+k*C+K)x=0
49: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
51: /* K is the 2-D Laplacian */
52: PetscCall(MatCreate(PETSC_COMM_WORLD,&K));
53: PetscCall(MatSetSizes(K,PETSC_DECIDE,PETSC_DECIDE,N,N));
54: PetscCall(MatSetFromOptions(K));
55: PetscCall(MatSetUp(K));
56: PetscCall(MatGetOwnershipRange(K,&Istart,&Iend));
57: for (II=Istart;II<Iend;II++) {
58: i = II/n; j = II-i*n;
59: if (i>0) PetscCall(MatSetValue(K,II,II-n,-1.0,INSERT_VALUES));
60: if (i<m-1) PetscCall(MatSetValue(K,II,II+n,-1.0,INSERT_VALUES));
61: if (j>0) PetscCall(MatSetValue(K,II,II-1,-1.0,INSERT_VALUES));
62: if (j<n-1) PetscCall(MatSetValue(K,II,II+1,-1.0,INSERT_VALUES));
63: PetscCall(MatSetValue(K,II,II,4.0,INSERT_VALUES));
64: }
65: PetscCall(MatAssemblyBegin(K,MAT_FINAL_ASSEMBLY));
66: PetscCall(MatAssemblyEnd(K,MAT_FINAL_ASSEMBLY));
68: /* C is the 1-D Laplacian on horizontal lines */
69: PetscCall(MatCreate(PETSC_COMM_WORLD,&C));
70: PetscCall(MatSetSizes(C,PETSC_DECIDE,PETSC_DECIDE,N,N));
71: PetscCall(MatSetFromOptions(C));
72: PetscCall(MatSetUp(C));
73: PetscCall(MatGetOwnershipRange(C,&Istart,&Iend));
74: for (II=Istart;II<Iend;II++) {
75: i = II/n; j = II-i*n;
76: if (j>0) PetscCall(MatSetValue(C,II,II-1,-1.0,INSERT_VALUES));
77: if (j<n-1) PetscCall(MatSetValue(C,II,II+1,-1.0,INSERT_VALUES));
78: PetscCall(MatSetValue(C,II,II,2.0,INSERT_VALUES));
79: }
80: PetscCall(MatAssemblyBegin(C,MAT_FINAL_ASSEMBLY));
81: PetscCall(MatAssemblyEnd(C,MAT_FINAL_ASSEMBLY));
83: /* M is a diagonal matrix */
84: PetscCall(MatCreate(PETSC_COMM_WORLD,&M));
85: PetscCall(MatSetSizes(M,PETSC_DECIDE,PETSC_DECIDE,N,N));
86: PetscCall(MatSetFromOptions(M));
87: PetscCall(MatSetUp(M));
88: PetscCall(MatGetOwnershipRange(M,&Istart,&Iend));
89: for (II=Istart;II<Iend;II++) PetscCall(MatSetValue(M,II,II,(PetscReal)(II+1),INSERT_VALUES));
90: PetscCall(MatAssemblyBegin(M,MAT_FINAL_ASSEMBLY));
91: PetscCall(MatAssemblyEnd(M,MAT_FINAL_ASSEMBLY));
93: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
94: Create the eigensolver and set various options
95: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
97: PetscCall(PEPCreate(PETSC_COMM_WORLD,&pep));
98: A[0] = K; A[1] = C; A[2] = M;
99: PetscCall(PEPSetOperators(pep,3,A));
100: PetscCall(PEPSetProblemType(pep,PEP_HERMITIAN));
101: PetscCall(PEPSetDimensions(pep,4,20,PETSC_DEFAULT));
103: /* setup convergence test relative to the norm of M */
104: PetscCall(MatNorm(M,NORM_1,&norm));
105: PetscCall(PEPSetConvergenceTestFunction(pep,MyConvergedRel,&norm,NULL));
106: PetscCall(PEPSetFromOptions(pep));
108: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
109: Solve the eigensystem
110: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
112: PetscCall(PEPSolve(pep));
113: PetscCall(PEPGetDimensions(pep,&nev,NULL,NULL));
114: PetscCall(PetscPrintf(PETSC_COMM_WORLD," Number of requested eigenvalues: %" PetscInt_FMT "\n",nev));
116: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
117: Display solution and clean up
118: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
120: PetscCall(PEPErrorView(pep,PEP_ERROR_BACKWARD,NULL));
121: PetscCall(PEPDestroy(&pep));
122: PetscCall(MatDestroy(&M));
123: PetscCall(MatDestroy(&C));
124: PetscCall(MatDestroy(&K));
125: PetscCall(SlepcFinalize());
126: return 0;
127: }
129: /*TEST
131: testset:
132: requires: double
133: suffix: 1
135: TEST*/