Actual source code: test10.c
slepc-3.20.1 2023-11-27
1: /*
2: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3: SLEPc - Scalable Library for Eigenvalue Problem Computations
4: Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
6: This file is part of SLEPc.
7: SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9: */
11: static char help[] = "Tests multiple calls to NEPSolve() with different matrix size.\n\n"
12: "The command line options are:\n"
13: " -n <n>, where <n> = number of grid subdivisions.\n"
14: " -tau <tau>, where <tau> is the delay parameter.\n"
15: " -split <0/1>, to select the split form in the problem definition (enabled by default).\n";
17: /* Based on ex22.c (delay) */
19: #include <slepcnep.h>
21: /*
22: User-defined application context
23: */
24: typedef struct {
25: PetscScalar tau;
26: PetscReal a;
27: } ApplicationCtx;
29: /*
30: Create problem matrices in split form
31: */
32: PetscErrorCode BuildSplitMatrices(PetscInt n,PetscReal a,Mat *Id,Mat *A,Mat *B)
33: {
34: PetscInt i,Istart,Iend;
35: PetscReal h,xi;
36: PetscScalar b;
38: PetscFunctionBeginUser;
39: h = PETSC_PI/(PetscReal)(n+1);
41: /* Identity matrix */
42: PetscCall(MatCreateConstantDiagonal(PETSC_COMM_WORLD,PETSC_DECIDE,PETSC_DECIDE,n,n,1.0,Id));
43: PetscCall(MatSetOption(*Id,MAT_HERMITIAN,PETSC_TRUE));
45: /* A = 1/h^2*tridiag(1,-2,1) + a*I */
46: PetscCall(MatCreate(PETSC_COMM_WORLD,A));
47: PetscCall(MatSetSizes(*A,PETSC_DECIDE,PETSC_DECIDE,n,n));
48: PetscCall(MatSetFromOptions(*A));
49: PetscCall(MatSetUp(*A));
50: PetscCall(MatGetOwnershipRange(*A,&Istart,&Iend));
51: for (i=Istart;i<Iend;i++) {
52: if (i>0) PetscCall(MatSetValue(*A,i,i-1,1.0/(h*h),INSERT_VALUES));
53: if (i<n-1) PetscCall(MatSetValue(*A,i,i+1,1.0/(h*h),INSERT_VALUES));
54: PetscCall(MatSetValue(*A,i,i,-2.0/(h*h)+a,INSERT_VALUES));
55: }
56: PetscCall(MatAssemblyBegin(*A,MAT_FINAL_ASSEMBLY));
57: PetscCall(MatAssemblyEnd(*A,MAT_FINAL_ASSEMBLY));
58: PetscCall(MatSetOption(*A,MAT_HERMITIAN,PETSC_TRUE));
60: /* B = diag(b(xi)) */
61: PetscCall(MatCreate(PETSC_COMM_WORLD,B));
62: PetscCall(MatSetSizes(*B,PETSC_DECIDE,PETSC_DECIDE,n,n));
63: PetscCall(MatSetFromOptions(*B));
64: PetscCall(MatSetUp(*B));
65: PetscCall(MatGetOwnershipRange(*B,&Istart,&Iend));
66: for (i=Istart;i<Iend;i++) {
67: xi = (i+1)*h;
68: b = -4.1+xi*(1.0-PetscExpReal(xi-PETSC_PI));
69: PetscCall(MatSetValue(*B,i,i,b,INSERT_VALUES));
70: }
71: PetscCall(MatAssemblyBegin(*B,MAT_FINAL_ASSEMBLY));
72: PetscCall(MatAssemblyEnd(*B,MAT_FINAL_ASSEMBLY));
73: PetscCall(MatSetOption(*B,MAT_HERMITIAN,PETSC_TRUE));
74: PetscFunctionReturn(PETSC_SUCCESS);
75: }
77: /*
78: Compute Function matrix T(lambda)
79: */
80: PetscErrorCode FormFunction(NEP nep,PetscScalar lambda,Mat fun,Mat B,void *ctx)
81: {
82: ApplicationCtx *user = (ApplicationCtx*)ctx;
83: PetscInt i,n,Istart,Iend;
84: PetscReal h,xi;
85: PetscScalar b;
87: PetscFunctionBeginUser;
88: PetscCall(MatGetSize(fun,&n,NULL));
89: h = PETSC_PI/(PetscReal)(n+1);
90: PetscCall(MatGetOwnershipRange(fun,&Istart,&Iend));
91: for (i=Istart;i<Iend;i++) {
92: if (i>0) PetscCall(MatSetValue(fun,i,i-1,1.0/(h*h),INSERT_VALUES));
93: if (i<n-1) PetscCall(MatSetValue(fun,i,i+1,1.0/(h*h),INSERT_VALUES));
94: xi = (i+1)*h;
95: b = -4.1+xi*(1.0-PetscExpReal(xi-PETSC_PI));
96: PetscCall(MatSetValue(fun,i,i,-lambda-2.0/(h*h)+user->a+PetscExpScalar(-user->tau*lambda)*b,INSERT_VALUES));
97: }
98: PetscCall(MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY));
99: PetscCall(MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY));
100: if (fun != B) {
101: PetscCall(MatAssemblyBegin(fun,MAT_FINAL_ASSEMBLY));
102: PetscCall(MatAssemblyEnd(fun,MAT_FINAL_ASSEMBLY));
103: }
104: PetscFunctionReturn(PETSC_SUCCESS);
105: }
107: /*
108: Compute Jacobian matrix T'(lambda)
109: */
110: PetscErrorCode FormJacobian(NEP nep,PetscScalar lambda,Mat jac,void *ctx)
111: {
112: ApplicationCtx *user = (ApplicationCtx*)ctx;
113: PetscInt i,n,Istart,Iend;
114: PetscReal h,xi;
115: PetscScalar b;
117: PetscFunctionBeginUser;
118: PetscCall(MatGetSize(jac,&n,NULL));
119: h = PETSC_PI/(PetscReal)(n+1);
120: PetscCall(MatGetOwnershipRange(jac,&Istart,&Iend));
121: for (i=Istart;i<Iend;i++) {
122: xi = (i+1)*h;
123: b = -4.1+xi*(1.0-PetscExpReal(xi-PETSC_PI));
124: PetscCall(MatSetValue(jac,i,i,-1.0-user->tau*PetscExpScalar(-user->tau*lambda)*b,INSERT_VALUES));
125: }
126: PetscCall(MatAssemblyBegin(jac,MAT_FINAL_ASSEMBLY));
127: PetscCall(MatAssemblyEnd(jac,MAT_FINAL_ASSEMBLY));
128: PetscFunctionReturn(PETSC_SUCCESS);
129: }
131: int main(int argc,char **argv)
132: {
133: NEP nep; /* nonlinear eigensolver context */
134: Mat Id,A,B,J,F; /* problem matrices */
135: FN f1,f2,f3; /* functions to define the nonlinear operator */
136: ApplicationCtx ctx; /* user-defined context */
137: Mat mats[3];
138: FN funs[3];
139: PetscScalar coeffs[2];
140: PetscInt n=128;
141: PetscReal tau=0.001,a=20;
142: PetscBool split=PETSC_TRUE;
144: PetscFunctionBeginUser;
145: PetscCall(SlepcInitialize(&argc,&argv,(char*)0,help));
146: PetscCall(PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL));
147: PetscCall(PetscOptionsGetReal(NULL,NULL,"-tau",&tau,NULL));
148: PetscCall(PetscOptionsGetBool(NULL,NULL,"-split",&split,NULL));
149: PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\n1-D Delay Eigenproblem, n=%" PetscInt_FMT ", tau=%g\n\n",n,(double)tau));
151: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
152: Create nonlinear eigensolver and set options
153: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
155: PetscCall(NEPCreate(PETSC_COMM_WORLD,&nep));
156: PetscCall(NEPSetTolerances(nep,1e-9,PETSC_DEFAULT));
158: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
159: First solve
160: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
162: if (split) {
163: PetscCall(BuildSplitMatrices(n,a,&Id,&A,&B));
164: /* f1=-lambda */
165: PetscCall(FNCreate(PETSC_COMM_WORLD,&f1));
166: PetscCall(FNSetType(f1,FNRATIONAL));
167: coeffs[0] = -1.0; coeffs[1] = 0.0;
168: PetscCall(FNRationalSetNumerator(f1,2,coeffs));
169: /* f2=1.0 */
170: PetscCall(FNCreate(PETSC_COMM_WORLD,&f2));
171: PetscCall(FNSetType(f2,FNRATIONAL));
172: coeffs[0] = 1.0;
173: PetscCall(FNRationalSetNumerator(f2,1,coeffs));
174: /* f3=exp(-tau*lambda) */
175: PetscCall(FNCreate(PETSC_COMM_WORLD,&f3));
176: PetscCall(FNSetType(f3,FNEXP));
177: PetscCall(FNSetScale(f3,-tau,1.0));
178: mats[0] = A; funs[0] = f2;
179: mats[1] = Id; funs[1] = f1;
180: mats[2] = B; funs[2] = f3;
181: PetscCall(NEPSetSplitOperator(nep,3,mats,funs,SUBSET_NONZERO_PATTERN));
182: } else {
183: /* callback form */
184: ctx.tau = tau;
185: ctx.a = a;
186: PetscCall(MatCreate(PETSC_COMM_WORLD,&F));
187: PetscCall(MatSetSizes(F,PETSC_DECIDE,PETSC_DECIDE,n,n));
188: PetscCall(MatSetFromOptions(F));
189: PetscCall(MatSeqAIJSetPreallocation(F,3,NULL));
190: PetscCall(MatMPIAIJSetPreallocation(F,3,NULL,1,NULL));
191: PetscCall(MatSetUp(F));
192: PetscCall(NEPSetFunction(nep,F,F,FormFunction,&ctx));
193: PetscCall(MatCreate(PETSC_COMM_WORLD,&J));
194: PetscCall(MatSetSizes(J,PETSC_DECIDE,PETSC_DECIDE,n,n));
195: PetscCall(MatSetFromOptions(J));
196: PetscCall(MatSeqAIJSetPreallocation(J,3,NULL));
197: PetscCall(MatMPIAIJSetPreallocation(F,3,NULL,1,NULL));
198: PetscCall(MatSetUp(J));
199: PetscCall(NEPSetJacobian(nep,J,FormJacobian,&ctx));
200: }
202: /* Set solver parameters at runtime */
203: PetscCall(NEPSetFromOptions(nep));
205: /* Solve the eigensystem */
206: PetscCall(NEPSolve(nep));
207: PetscCall(NEPErrorView(nep,NEP_ERROR_RELATIVE,NULL));
209: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
210: Second solve, with problem matrices of size 2*n
211: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
213: n *= 2;
214: PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\n1-D Delay Eigenproblem, n=%" PetscInt_FMT ", tau=%g\n\n",n,(double)tau));
215: if (split) {
216: PetscCall(MatDestroy(&Id));
217: PetscCall(MatDestroy(&A));
218: PetscCall(MatDestroy(&B));
219: PetscCall(BuildSplitMatrices(n,a,&Id,&A,&B));
220: mats[0] = A;
221: mats[1] = Id;
222: mats[2] = B;
223: PetscCall(NEPSetSplitOperator(nep,3,mats,funs,SUBSET_NONZERO_PATTERN));
224: } else {
225: /* callback form */
226: PetscCall(MatDestroy(&F));
227: PetscCall(MatDestroy(&J));
228: PetscCall(MatCreate(PETSC_COMM_WORLD,&F));
229: PetscCall(MatSetSizes(F,PETSC_DECIDE,PETSC_DECIDE,n,n));
230: PetscCall(MatSetFromOptions(F));
231: PetscCall(MatSeqAIJSetPreallocation(F,3,NULL));
232: PetscCall(MatMPIAIJSetPreallocation(F,3,NULL,1,NULL));
233: PetscCall(MatSetUp(F));
234: PetscCall(NEPSetFunction(nep,F,F,FormFunction,&ctx));
235: PetscCall(MatCreate(PETSC_COMM_WORLD,&J));
236: PetscCall(MatSetSizes(J,PETSC_DECIDE,PETSC_DECIDE,n,n));
237: PetscCall(MatSetFromOptions(J));
238: PetscCall(MatSeqAIJSetPreallocation(J,3,NULL));
239: PetscCall(MatMPIAIJSetPreallocation(F,3,NULL,1,NULL));
240: PetscCall(MatSetUp(J));
241: PetscCall(NEPSetJacobian(nep,J,FormJacobian,&ctx));
242: }
244: /* Solve the eigensystem */
245: PetscCall(NEPSolve(nep));
246: PetscCall(NEPErrorView(nep,NEP_ERROR_RELATIVE,NULL));
248: PetscCall(NEPDestroy(&nep));
249: if (split) {
250: PetscCall(MatDestroy(&Id));
251: PetscCall(MatDestroy(&A));
252: PetscCall(MatDestroy(&B));
253: PetscCall(FNDestroy(&f1));
254: PetscCall(FNDestroy(&f2));
255: PetscCall(FNDestroy(&f3));
256: } else {
257: PetscCall(MatDestroy(&F));
258: PetscCall(MatDestroy(&J));
259: }
260: PetscCall(SlepcFinalize());
261: return 0;
262: }
264: /*TEST
266: testset:
267: nsize: 2
268: requires: !single
269: output_file: output/test10_1.out
270: test:
271: suffix: 1
272: args: -nep_type narnoldi -nep_target 0.55
273: test:
274: suffix: 1_rii
275: args: -nep_type rii -nep_target 0.55 -nep_rii_hermitian -split {{0 1}}
276: test:
277: suffix: 1_narnoldi
278: args: -nep_type narnoldi -nep_target 0.55 -nep_narnoldi_lag_preconditioner 2
279: test:
280: suffix: 1_slp
281: args: -nep_type slp -nep_slp_st_pc_type redundant -split {{0 1}}
282: test:
283: suffix: 1_interpol
284: args: -nep_type interpol -rg_type interval -rg_interval_endpoints .5,1,-.1,.1 -nep_target .7 -nep_interpol_st_pc_type redundant
285: test:
286: suffix: 1_narnoldi_sync
287: args: -nep_type narnoldi -ds_parallel synchronized
289: testset:
290: args: -nep_nev 2 -rg_type interval -rg_interval_endpoints .5,15,-.1,.1 -nep_target .7
291: requires: !single
292: output_file: output/test10_2.out
293: filter: sed -e "s/[+-]0\.0*i//g"
294: test:
295: suffix: 2_interpol
296: args: -nep_type interpol -nep_interpol_pep_type jd -nep_interpol_st_pc_type sor
297: test:
298: suffix: 2_nleigs
299: args: -nep_type nleigs -split {{0 1}}
300: requires: complex
301: test:
302: suffix: 2_nleigs_real
303: args: -nep_type nleigs -rg_interval_endpoints .5,15 -split {{0 1}}
304: requires: !complex
306: test:
307: suffix: 3
308: requires: complex !single
309: args: -nep_type ciss -rg_type ellipse -rg_ellipse_center 10 -rg_ellipse_radius 9.5 -rg_ellipse_vscale 0.1 -split {{0 1}}
310: timeoutfactor: 2
312: TEST*/