Actual source code: test10.c

slepc-3.20.1 2023-11-27
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */

 11: static char help[] = "Tests a user-defined convergence test in PEP (based on ex16.c).\n\n"
 12:   "The command line options are:\n"
 13:   "  -n <n>, where <n> = number of grid subdivisions in x dimension.\n"
 14:   "  -m <m>, where <m> = number of grid subdivisions in y dimension.\n\n";

 16: #include <slepcpep.h>

 18: /*
 19:   MyConvergedRel - Convergence test relative to the norm of M (given in ctx).
 20: */
 21: PetscErrorCode MyConvergedRel(PEP pep,PetscScalar eigr,PetscScalar eigi,PetscReal res,PetscReal *errest,void *ctx)
 22: {
 23:   PetscReal norm = *(PetscReal*)ctx;

 25:   PetscFunctionBegin;
 26:   *errest = res/norm;
 27:   PetscFunctionReturn(PETSC_SUCCESS);
 28: }

 30: int main(int argc,char **argv)
 31: {
 32:   Mat            M,C,K,A[3];      /* problem matrices */
 33:   PEP            pep;             /* polynomial eigenproblem solver context */
 34:   PetscInt       N,n=10,m,Istart,Iend,II,nev,i,j;
 35:   PetscBool      flag;
 36:   PetscReal      norm;

 38:   PetscFunctionBeginUser;
 39:   PetscCall(SlepcInitialize(&argc,&argv,(char*)0,help));

 41:   PetscCall(PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL));
 42:   PetscCall(PetscOptionsGetInt(NULL,NULL,"-m",&m,&flag));
 43:   if (!flag) m=n;
 44:   N = n*m;
 45:   PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\nQuadratic Eigenproblem, N=%" PetscInt_FMT " (%" PetscInt_FMT "x%" PetscInt_FMT " grid)\n\n",N,n,m));

 47:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 48:      Compute the matrices that define the eigensystem, (k^2*M+k*C+K)x=0
 49:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

 51:   /* K is the 2-D Laplacian */
 52:   PetscCall(MatCreate(PETSC_COMM_WORLD,&K));
 53:   PetscCall(MatSetSizes(K,PETSC_DECIDE,PETSC_DECIDE,N,N));
 54:   PetscCall(MatSetFromOptions(K));
 55:   PetscCall(MatSetUp(K));
 56:   PetscCall(MatGetOwnershipRange(K,&Istart,&Iend));
 57:   for (II=Istart;II<Iend;II++) {
 58:     i = II/n; j = II-i*n;
 59:     if (i>0) PetscCall(MatSetValue(K,II,II-n,-1.0,INSERT_VALUES));
 60:     if (i<m-1) PetscCall(MatSetValue(K,II,II+n,-1.0,INSERT_VALUES));
 61:     if (j>0) PetscCall(MatSetValue(K,II,II-1,-1.0,INSERT_VALUES));
 62:     if (j<n-1) PetscCall(MatSetValue(K,II,II+1,-1.0,INSERT_VALUES));
 63:     PetscCall(MatSetValue(K,II,II,4.0,INSERT_VALUES));
 64:   }
 65:   PetscCall(MatAssemblyBegin(K,MAT_FINAL_ASSEMBLY));
 66:   PetscCall(MatAssemblyEnd(K,MAT_FINAL_ASSEMBLY));

 68:   /* C is the 1-D Laplacian on horizontal lines */
 69:   PetscCall(MatCreate(PETSC_COMM_WORLD,&C));
 70:   PetscCall(MatSetSizes(C,PETSC_DECIDE,PETSC_DECIDE,N,N));
 71:   PetscCall(MatSetFromOptions(C));
 72:   PetscCall(MatSetUp(C));
 73:   PetscCall(MatGetOwnershipRange(C,&Istart,&Iend));
 74:   for (II=Istart;II<Iend;II++) {
 75:     i = II/n; j = II-i*n;
 76:     if (j>0) PetscCall(MatSetValue(C,II,II-1,-1.0,INSERT_VALUES));
 77:     if (j<n-1) PetscCall(MatSetValue(C,II,II+1,-1.0,INSERT_VALUES));
 78:     PetscCall(MatSetValue(C,II,II,2.0,INSERT_VALUES));
 79:   }
 80:   PetscCall(MatAssemblyBegin(C,MAT_FINAL_ASSEMBLY));
 81:   PetscCall(MatAssemblyEnd(C,MAT_FINAL_ASSEMBLY));

 83:   /* M is a diagonal matrix */
 84:   PetscCall(MatCreate(PETSC_COMM_WORLD,&M));
 85:   PetscCall(MatSetSizes(M,PETSC_DECIDE,PETSC_DECIDE,N,N));
 86:   PetscCall(MatSetFromOptions(M));
 87:   PetscCall(MatSetUp(M));
 88:   PetscCall(MatGetOwnershipRange(M,&Istart,&Iend));
 89:   for (II=Istart;II<Iend;II++) PetscCall(MatSetValue(M,II,II,(PetscReal)(II+1),INSERT_VALUES));
 90:   PetscCall(MatAssemblyBegin(M,MAT_FINAL_ASSEMBLY));
 91:   PetscCall(MatAssemblyEnd(M,MAT_FINAL_ASSEMBLY));

 93:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 94:                 Create the eigensolver and set various options
 95:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

 97:   PetscCall(PEPCreate(PETSC_COMM_WORLD,&pep));
 98:   A[0] = K; A[1] = C; A[2] = M;
 99:   PetscCall(PEPSetOperators(pep,3,A));
100:   PetscCall(PEPSetProblemType(pep,PEP_HERMITIAN));
101:   PetscCall(PEPSetDimensions(pep,4,20,PETSC_DEFAULT));

103:   /* setup convergence test relative to the norm of M */
104:   PetscCall(MatNorm(M,NORM_1,&norm));
105:   PetscCall(PEPSetConvergenceTestFunction(pep,MyConvergedRel,&norm,NULL));
106:   PetscCall(PEPSetFromOptions(pep));

108:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
109:                       Solve the eigensystem
110:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

112:   PetscCall(PEPSolve(pep));
113:   PetscCall(PEPGetDimensions(pep,&nev,NULL,NULL));
114:   PetscCall(PetscPrintf(PETSC_COMM_WORLD," Number of requested eigenvalues: %" PetscInt_FMT "\n",nev));

116:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
117:                     Display solution and clean up
118:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

120:   PetscCall(PEPErrorView(pep,PEP_ERROR_BACKWARD,NULL));
121:   PetscCall(PEPDestroy(&pep));
122:   PetscCall(MatDestroy(&M));
123:   PetscCall(MatDestroy(&C));
124:   PetscCall(MatDestroy(&K));
125:   PetscCall(SlepcFinalize());
126:   return 0;
127: }

129: /*TEST

131:    testset:
132:       requires: double
133:       suffix: 1

135: TEST*/